Enhancing dysarthric speech recognition through SepFormer and hierarchical attention network models with multistage transfer learning
R. Vinotha,
D. Hepsiba,
L. D. Vijay Anand
et al.
Abstract:Dysarthria, a motor speech disorder that impacts articulation and speech clarity, presents significant challenges for Automatic Speech Recognition (ASR) systems. This study proposes a groundbreaking approach to enhance the accuracy of Dysarthric Speech Recognition (DSR). A primary innovation lies in the integration of the SepFormer-Speech Enhancement Generative Adversarial Network (S-SEGAN), an advanced generative adversarial network tailored for Dysarthric Speech Enhancement (DSE), as a front-end processing s… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.