Chemical carcinogens to humans have been usually identified by epidemiological studies on the relationships between occupational or environmental exposure to the agents and specific cancer induction. In contrast, carcinogenic heterocyclic amines were identified under the principle that mutagens in bacterial in the Ames test are possible human carcinogens. In the 1970s to 1990s, more than 10 heterocyclic amines were isolated from pyrolysates of amino acids, proteins, meat or fish as mutagens in the Ames test, and they were demonstrated as carcinogens in rodents. In the 1980s and 1990s, we have developed derivatives of the Ames tester strains that overexpressed acetyltransferase of Salmonella typhimurium. These strains such as Salmonella typhimurium YG1024 exhibited a high sensitivity to the mutagenicity of the carcinogenic heterocyclic amines. Because of the high sensitivity, YG1024 and other YG strains were used for various purposes, e.g., identification of novel heterocyclic amines, mechanisms of metabolic activation, comparison of mutagenic potencies of various heterocyclic amines, and the co-mutagenic effects. In the 1990s and 2000s, we developed transgenic mice and rats for the detection of mutagenicity of chemicals in vivo. The transgenics were generated by the introduction of reporter genes for mutations into fertilized eggs of mice and rats. We named the transgenics as gpt delta because the gpt gene of Escherichia coli was used for detection of point mutations such as base substitutions and frameshifts and the red/gam genes of λ phage were employed to detect deletion mutations. The transgenic rodents gpt delta and other transgenics with lacI or lacZ as reporter genes have been utilized for characterization of mutagenicity of heterocyclic amines in vivo. In this review, we summarized the in vitro mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains and the in vivo mutagenicity in transgenic rodents. We discussed the relationships between in vitro and in vivo mutagenicity of the heterocyclic amines and their relations to the carcinogenicity.