The brushless DC (BLDC) motor is crucial in a variety of industrial and consumer applications due to its efficiency and precise control. This study investigates the heat transfer and cooling mechanisms in liquid-cooled BLDC motors in dishwashers, which are fundamental to maintaining optimal operating temperatures. Elevated temperatures can reduce operational efficiency, emphasizing the importance of effective heat dissipation. Liquid cooling proves to be very effective and offers advantages over air cooling by providing even temperature distribution and more accurate temperature control. Integrating liquid cooling systems into dishwasher designs provides a viable solution for managing motor temperatures while preheating dishwashing water. Using existing water infrastructure, these systems dissipate heat generated during motor operation, increasing energy efficiency and reliability, as analyzed using computational fluid dynamics (CFDs). The aim of this study is to optimize thermal management strategies in BLDC motors, particularly in dishwashers, by filling a critical gap in the existing literature. The goal of this comprehensive analysis is to develop resistant and efficient cooling solutions tailored to dishwasher environments, ultimately extending the life of BLDC motors in home appliances while using heat transfer to preheat water for wash cycles.