Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThis study investigates whether the skilled minority of active equity managers in emerging markets can be identified using a machine learning (ML) framework that incorporates a large set of performance characteristics.Design/methodology/approachThe study uses a cross-section of South African active equity managers from January 2002 to December 2021. The performance characteristics are analysed using ML models, with a particular focus on gradient boosters, and naïve selection techniques such as momentum and style alpha. The out-of-sample nominal, excess and risk-adjusted returns are evaluated, and precision tests are conducted to assess the accuracy of the performance predictions.FindingsA minority of active managers exhibit skill that results in generating alpha, even after accounting for fees, and show that ML models, particularly gradient boosters, are superior at identifying non-linearities. LightGBM (LG) achieves the highest out-of-sample nominal, excess and risk-adjusted return and proves to be the most accurate predictor of performance in precision tests. Naïve selection techniques, such as momentum and style alpha, outperform most ML models in forecasting emerging market active manager performance.Originality/valueThe authors contribute to the literature by demonstrating that a ML approach that incorporates a large set of performance characteristics can be used to identify skilled active equity managers in emerging markets. The findings suggest that both ML models and naïve selection techniques can be used to predict performance, but the former is more accurate in predicting ex ante performance. This study has practical implications for investment practitioners and academics interested in active asset manager performance in emerging markets.
PurposeThis study investigates whether the skilled minority of active equity managers in emerging markets can be identified using a machine learning (ML) framework that incorporates a large set of performance characteristics.Design/methodology/approachThe study uses a cross-section of South African active equity managers from January 2002 to December 2021. The performance characteristics are analysed using ML models, with a particular focus on gradient boosters, and naïve selection techniques such as momentum and style alpha. The out-of-sample nominal, excess and risk-adjusted returns are evaluated, and precision tests are conducted to assess the accuracy of the performance predictions.FindingsA minority of active managers exhibit skill that results in generating alpha, even after accounting for fees, and show that ML models, particularly gradient boosters, are superior at identifying non-linearities. LightGBM (LG) achieves the highest out-of-sample nominal, excess and risk-adjusted return and proves to be the most accurate predictor of performance in precision tests. Naïve selection techniques, such as momentum and style alpha, outperform most ML models in forecasting emerging market active manager performance.Originality/valueThe authors contribute to the literature by demonstrating that a ML approach that incorporates a large set of performance characteristics can be used to identify skilled active equity managers in emerging markets. The findings suggest that both ML models and naïve selection techniques can be used to predict performance, but the former is more accurate in predicting ex ante performance. This study has practical implications for investment practitioners and academics interested in active asset manager performance in emerging markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.