Enhancing Explainability in Predictive Maintenance : Investigating the Impact of Data Preprocessing Techniques on XAI Effectiveness
Mouhamadou Lamine NDAO,
Genane YOUNESS,
Ndèye NIANG
et al.
Abstract:In predictive maintenance, the complexity of the data often requires the use of Deep Learning models. These models, called “black boxes”, have proved their worth in predicting the Remaining Useful Life (RUL) of industrial machines. However, the inherent opacity of these models requires the incorporation of post-hoc explanation methods to enhance transparency. The quality of the explanations provided is then assessed using so-called evaluation metrics. Modeling is a whole process that includes an important data… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.