Enhancing Explainable Artificial Intelligence: Using Adaptive Feature Weight Genetic Explanation (AFWGE) with Pearson Correlation to Identify Crucial Feature Groups
Ebtisam AlJalaud,
Manar Hosny
Abstract:The ‘black box’ nature of machine learning (ML) approaches makes it challenging to understand how most artificial intelligence (AI) models make decisions. Explainable AI (XAI) aims to provide analytical techniques to understand the behavior of ML models. XAI utilizes counterfactual explanations that indicate how variations in input features lead to different outputs. However, existing methods must also highlight the importance of features to provide more actionable explanations that would aid in the identifica… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.