2021
DOI: 10.1007/978-3-030-90556-9_10
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing Farmers Productivity Through IoT and Machine Learning: A State-of-the-Art Review of Recent Trends in Africa

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 36 publications
0
2
0
1
Order By: Relevance
“…In [9] , a wide-ranging review of recent studies devoted to applications of internet of things and machine learning in agricultural production in Africa is presented. The studies reviewed focus on precision farming, animal and environmental condition monitoring, pests and crop disease detection and prediction, weather forecasting and classification, and prediction and estimation of soil properties.…”
Section: Literature Reviewmentioning
confidence: 99%
“…In [9] , a wide-ranging review of recent studies devoted to applications of internet of things and machine learning in agricultural production in Africa is presented. The studies reviewed focus on precision farming, animal and environmental condition monitoring, pests and crop disease detection and prediction, weather forecasting and classification, and prediction and estimation of soil properties.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The seed production fields have sensors installed that gather environmental data that is utilized to select the best seed crop that would thrive in the given climatic circumstances. The sensors that make up the smart farming ecosystem are incredibly accurate at detecting real-time meteorological conditions including humidity, rainfall, temperature, and more [10]. There are several sensors available to detect all of these factors and configure them in accordance with our needs.…”
Section: Climatic Conditionsmentioning
confidence: 99%
“…Ainda, conformeUpton (1993), para promover decisão, com foco em soluções digitais para a agricultura, podem melhorar a qualidade e a velocidade de respostas às demandas necessárias daquela população, e assim atingir metas de sustentabilidade no controle fitossanitário(Hasanaliyeva;Si Ammour;Yaseen; abastecimento (Quayson;Bai;Sarkis, 2021). Já, estudos sobre a internet das coisas e aprendizado de máquina, na produção agrícola na África, estão concentrados na agricultura de precisão, manejo de pragas, previsão do tempo e monitoramento ambiental(Nyasulu;Diattara;Traore; Ba, 2021). Já, o desenvolvimento sustentável é um elemento chave da inovação em várias áreas, e a produção de biomassa e biocombustíveis na África é uma alternativa viável que pode causar danos ou benefícios à região(Landeweerd;Pierce;Kinderlerer;Osseweijer, 2012).…”
unclassified