The fermentation of synthesis gas, or syngas, which consists mainly of CO, CO 2 and H 2 by acetogenic bacteria has the potential to help in transitioning from a fossil-fuel-based to a renewable bio-economy. Clostridium ljungdahlii, one of such microorganisms, has as main fermentation products acetate and ethanol. Multiple research efforts have been directed towards understanding how the metabolism and the product formation of this, and other acetogenic bacteria, can be directed towards increasing productivities and yields; nonetheless, transferring those findings to a particular set-up can prove challenging. This study used a well-established and robust fed-batch fermentation system with C. ljungdahlii to look into the effects of different fermentation pH profiles, gas flow, and the supplementation with additional yeast extract or cysteine on growth, product formation ratios, yields, and productivities, as well as gas consumption. Neither yeast extract nor cysteine supplementation had a noticeable impact on cell growth, product formation or overall gas consumption. The lowering of the pH proved mainly detrimental, with decreased productivities and no improvement in ethanol ratios. The most notable shift towards ethanol was achieved by the combination of lowering both the pH and the gas flow after 24 h, but with the caveat of lower productivity. The obtained results, unexpected to some extent, highlight the necessity for a better understanding of the physiology and the metabolic regulation of acetogenic bacteria in order for this process to become more industrially relevant.