2023
DOI: 10.48550/arxiv.2303.00286
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Enhancing Knowledge Graph Embedding Models with Semantic-driven Loss Functions

Abstract: Knowledge graph embedding models (KGEMs) are used for various tasks related to knowledge graphs (KGs), including link prediction. They are trained with loss functions that are computed considering a batch of scored triples and their corresponding labels. Traditional approaches consider the label of a triple to be either true or false. However, recent works suggest that all negative triples should not be valued equally. In line with this recent assumption, we posit that semantically valid negative triples might… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 20 publications
0
0
0
Order By: Relevance