2024
DOI: 10.17798/bitlisfen.1457065
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing Radar Image Classification with Autoencoder-CNN Hybrid System

Kürşad Uçar

Abstract: The tracking, analysis, and classification of human movements can be crucial, particularly in areas such as elderly care, healthcare, and infant care. Typically, such tracking is done remotely with cameras. However, radar systems have emerged as significant methods and tools for these tasks due to their advantages such as privacy, wireless operation, and the ability to work through walls. By converting reflected radar signals from targets into images, human activities can be classified using powerful classific… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?