Sensor-based human activity recognition (HAR) plays a fundamental role in various mobile application scenarios, but the model performance of HAR heavily relies on the richness of the dataset and the completeness of data annotation. To address the shortage of comprehensive activity types in collected datasets, we adopt the domain adaptation technique with a graph neural network-based approach by incorporating an adaptive learning mechanism to enhance the action recognition model’s generalization ability, especially when faced with limited sample sizes. To evaluate the effectiveness of our proposed approach, we conducted experiments using three well-known datasets: MHealth, PAMAP2, and TNDA. The experimental results demonstrate the efficacy of our approach in sensor-based HAR tasks, achieving impressive average accuracies of 98.88%, 98.58%, and 97.78% based on the respective datasets. Furthermore, we conducted transfer learning experiments to address the domain adaptation problem. These experiments revealed that our proposed model exhibits exceptional transferability and distinguishing ability, even in scenarios with limited available samples. Thus, our approach offers a practical and viable solution for sensor-based HAR tasks.