The formation of bulk heterojunctions (BHJs) through sequential deposition (SqD) of polymer donor and nonfullerene acceptor (NFA) solutions offers advantages over the widely used single-step deposition of polymer:NFA blend solutions (BSD). To enhance the application of SqD in organic solar cell production, it is crucial to improve reproducibility and stability while maintaining a high efficiency. This study introduces a novel method termed cross-linking-integrated sequential deposition (XSqD) for fabricating efficient and reproducible BHJs. In this method, polymers are cross-linked using efficient 2Bx-4EO or 2Bx-8EO cross-linkers, which enhance the solvent resistance of the polymer donor layer against the solvents used for NFAs. This approach addresses the challenge of selecting a suitable solvent for NFAs, a major obstacle in SqD-processed OSCs. The utilization of 2Bx-4EO in XSqD leads to a significant increase in reproducibility compared to that of conventional SqD, coupled with a high-power conversion efficiency (PCE) of 14.1%. Furthermore, XSqD devices exhibit superior stability, showing only 1% and 6% reductions in their initial PCE after thermal stress at 80 and 120 °C for 50 h, respectively.