Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Attention is one of many human cognitive functions that are essential in everyday life. Given our limited processing capacity, attention helps us focus only on what matters. Focusing attention on one speaker in an environment with many speakers is a critical ability of the human auditory system. This paper proposes a new end-to-end method based on the combined transformer and graph convolutional neural network (TraGCNN) that can effectively detect auditory attention from electroencephalograms (EEGs). This approach eliminates the need for manual feature extraction, which is often time-consuming and subjective. Here, the first EEG signals are converted to graphs. We then extract attention information from these graphs using spatial and temporal approaches. Finally, our models are trained with these data. Our model can detect auditory attention in both the spatial and temporal domains. Here, the EEG input is first processed by transformer layers to obtain a sequential representation of EEG based on attention onsets. Then, a family of graph convolutional layers is used to find the most active electrodes using the spatial position of electrodes. Finally, the corresponding EEG features of active electrodes are fed into the graph attention layers to detect auditory attention. The Fuglsang 2020 dataset is used in the experiments to train and test the proposed and baseline systems. The new TraGCNN approach, as compared with state-of-the-art attention classification methods from the literature, yields the highest performance in terms of accuracy (80.12%) as a classification metric. Additionally, the proposed model results in higher performance than our previously graph-based model for different lengths of EEG segments. The new TraGCNN approach is advantageous because attenuation detection is achieved from EEG signals of subjects without requiring speech stimuli, as is the case with conventional auditory attention detection methods. Furthermore, examining the proposed model for different lengths of EEG segments shows that the model is faster than our previous graph-based detection method in terms of computational complexity. The findings of this study have important implications for the understanding and assessment of auditory attention, which is crucial for many applications, such as brain–computer interface (BCI) systems, speech separation, and neuro-steered hearing aid development.
Attention is one of many human cognitive functions that are essential in everyday life. Given our limited processing capacity, attention helps us focus only on what matters. Focusing attention on one speaker in an environment with many speakers is a critical ability of the human auditory system. This paper proposes a new end-to-end method based on the combined transformer and graph convolutional neural network (TraGCNN) that can effectively detect auditory attention from electroencephalograms (EEGs). This approach eliminates the need for manual feature extraction, which is often time-consuming and subjective. Here, the first EEG signals are converted to graphs. We then extract attention information from these graphs using spatial and temporal approaches. Finally, our models are trained with these data. Our model can detect auditory attention in both the spatial and temporal domains. Here, the EEG input is first processed by transformer layers to obtain a sequential representation of EEG based on attention onsets. Then, a family of graph convolutional layers is used to find the most active electrodes using the spatial position of electrodes. Finally, the corresponding EEG features of active electrodes are fed into the graph attention layers to detect auditory attention. The Fuglsang 2020 dataset is used in the experiments to train and test the proposed and baseline systems. The new TraGCNN approach, as compared with state-of-the-art attention classification methods from the literature, yields the highest performance in terms of accuracy (80.12%) as a classification metric. Additionally, the proposed model results in higher performance than our previously graph-based model for different lengths of EEG segments. The new TraGCNN approach is advantageous because attenuation detection is achieved from EEG signals of subjects without requiring speech stimuli, as is the case with conventional auditory attention detection methods. Furthermore, examining the proposed model for different lengths of EEG segments shows that the model is faster than our previous graph-based detection method in terms of computational complexity. The findings of this study have important implications for the understanding and assessment of auditory attention, which is crucial for many applications, such as brain–computer interface (BCI) systems, speech separation, and neuro-steered hearing aid development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.