Enhancing speech emotion recognition with deep learning using multi-feature stacking and data augmentation
Khasyi Al Mukarram,
M. Anang Mukhlas,
Amalia Zahra
Abstract:This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model wi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.