Current cognitive control accounts view goal-directed behavior as striking a balance between two antagonistic control demands: Stability, on the one hand, reflects a rigid, focused state of control and flexibility, while on the other, reflects a relaxed, distractible state, whereby goals can be rapidly updated to meet unexpected changes in demands. In the current study, we sought to test whether the avoidance of cognitive demand could motivate people to dynamically regulate control along the stability-flexibility continuum. In both cued (Experiment 1) and voluntary (Experiment 2) task-switching paradigms, we selectively associated either task-switches or task-repetitions with high cognitive demand (independent of task identity), and measured changes in performance in a following phase after the demand manipulation was removed. Contrasting performance with a control group, across both experiments, we found that selectively associating cognitive demand with task repetitions increased flexibility, but selectively associating cognitive demand with task switches failed to increase stability. The results of the current study provide novel evidence for avoidance-driven modulations of control regulation along the stability-flexibility continuum, while also highlighting some limitations in using task-switching paradigms to examine motivational influences on control adaptation. Data, analysis code, experiment code, and preprint available at osf.io/7rct9/.