Subhourly changes in solar irradiance can lead to energy models being biased high if realistic distributions of irradiance values are not reflected in the resource data and model. This is particularly true in solar facility designs with high inverter loading ratios (ILRs). When resource data with sufficient temporal and spatial resolution is not available for a site, synthetic variability can be added to the data that is available in an attempt to address this issue. In this work, we demonstrate the use of anonymized commercial resource datasets with synthetic variability and compare results with previous estimates of model bias due to inverter clipping and increasing ILR.