Silicon-substituted coumarin (SiC) was established as a substantial family of both intramolecular and intermolecular hydrogen bond (H-bond) enhanced fluorescent probes for sensitively tracking proteins in vivo through the assemble and disassemble of its nanoaggregates. The intramolecular H-bond in SiC has led to significant aggregation, antisolvatochromism, and strong fluorescence with bathochromically shifted spectra into farred or near-infrared (NIR) regions in polar, protic environments. Without further furnishing with organic linkers, the compact skeleton of SiC bearing H-bond has ensured sensitively and selectively sensing the targeting proteins with the protic reaction pockets through efficient disassemble of the aggregates. In the existence of strong intermolecular H-bonds with the target protein pocket, SiC resolved as high as >250-fold fluorescence enhancement. Selectively tracking proteins, including human serum albumin, human carbonic anhydrase (hCAII), avidin, SNAP-tag protein, and translocator protein, has confirmed SiC a versatile skeleton for sensitively monitoring proteins in complicated biological systems.