Enhancing the automatic facies classification of Brazilian presalt acoustic image logs with SwinV2-Unet: Leveraging transfer learning and confident learning
Nan You,
Yunyue Elita Li
Abstract:Facies classification of image logs plays a vital role in reservoir characterization, especially in the heterogeneous and anisotropic carbonate formations of the Brazilian pre-salt region. Although manual classification remains the industry standard for handling the complexity and diversity of image logs, it has notable disadvantages of being time-consuming, labor-intensive, subjective, and non-repeatable. Recent advancements in machine learning offer promising solutions for automation and acceleration. Howeve… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.