Enhancing the classification of seismic events with supervised machine learning and feature importance
Eman L. Habbak,
Mohamed S. Abdalzaher,
Adel S. Othman
et al.
Abstract:The accurate classification of seismic events into natural earthquakes (EQ) and quarry blasts (QB) is crucial for geological understanding, seismic hazard mitigation, and public safety. This paper proposes a machine-learning approach to discriminate seismic events, particularly differentiating between natural EQs and man-made QBs. The core of this study is to integrate different features into a unified dataset to train some linear and nonlinear supervised machine learning (ML) models. The proposed approach con… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.