Membrane-based water purification is poised to play an important role in tackling the potable water crisis for safe and clean water access for the general population. Several studies have focused on near two-dimensional membranes for this purpose, which is based on an ion rejection technique. However, membrane swelling in these materials has emerged as a significant challenge because it leads to the loss of function. Herein, we report a self-crosslinked MXene-intercalated graphene oxide (GO) membrane that retains ion and dye rejection properties because the physical cross-linking interaction between Ti− O−Ti and neighboring nanosheets effectively suppresses the swelling of the membrane. In addition to the associative Ti−O−Ti bonds, C−O−C, O�C−O, and C−OH bonds are also formed, which are important for inhibiting the swelling of the membrane. To ensure the longevity of these membranes in a service context, they were subjected to heat pressurization and subsequent thermal annealing. The membrane subjected to this novel processing history exhibits minimal swelling upon immersion in solutions and retains function, rejecting salt and dyes over a wide range of salt and dye concentrations. Furthermore, these membranes successfully rejected dye and salt over a period of 72 h without a degradation of function, suggesting that these membranes have the requisite durability for water filtration applications.