To avert climate change, there has been a rise in the usage of green energy sources that are also beneficial to the environment. To generate sustainable energy in a financially and technically efficient manner, our research attempts to close the gaps. The potential of green sources like photovoltaic (PV) and biomass for a rural community southwest of Sohag Al Gadida City, Sohag, Egypt, is examined in this research considering its techno-economic (TE) and eco-friendly feasibility. The HOMER Pro v3.14 package is used as a scaling and optimization instrument, to calculate the price of the PV/biomass setup and the size and characteristics of its parts. This is to estimate the corresponding electrical production and reduce the total annual cost for the customer. The suggested system structure is validated through the presentation of simulation outcomes and evaluations utilizing MATLAB/SIMULINK R2022a. In addition, a TE-environmental investigation of the optimized PV/biomass structure is performed. The optimum structure is carefully chosen from the best four configurations using the demand predilection by analogy to the perfect technique based on the generation cost, operation cost, energy production, and renewable fraction. The results also indicate that using hybrid PV/biomass is an attractive choice with the initial capital cost (ICC: USD 8.144), net present cost (NPC: USD 11,026), a low cost of energy (LCOE: 0.184 USD/kWh), and the high renewable fraction (RF: 99.9%) of the system. The annual CO2 emission performance of a PV/biomass system is much better than that of the grid alone and PV/diesel. This method might be applied in rural areas in other developing countries.