The prominent problem with graphite anodes in practical applications is the detrimental Li plating, resulting in rapid capacity fade and safety hazards. Herein, secondary gas evolution behavior during the Li-plating process was monitored by online electrochemical mass spectrometry (OEMS), and the onset of local microscale Li plating on the graphite anode was precisely/ explicitly detected in situ/operando for early safety warnings. The distribution of irreversible capacity loss (e.g., primary and secondary solid electrolyte interface (SEI), dead Li, etc.) under Li-plating conditions was accurately quantified by titration mass spectroscopy (TMS). Based on OEMS/TMS results, the effect of typical VC/FEC additives was recognized at the level of Li plating. The nature of vinylene carbonate (VC)/fluoroethylene carbonate (FEC) additive modification is to enhance the elasticity of primary and secondary SEI by adjusting organic carbonates and/or LiF components, leading to less "dead Li" capacity loss. Though VC-containing electrolyte greatly suppresses the H 2 /C 2 H 4 (flammable/explosive) evolution during Li plating, more H 2 is released from the reductive decomposition of FEC.