Application of the hot stamping process on heat-treatable aluminum alloys effectively solves the problems of large springback and poor ductility during forming at room temperature, which expands the range of applications of aluminum alloys in the transportation industry. Sheet heating plays an important role in the hot stamping process, and increasing the heating rate can improve the hot stamping efficiency to some extent. In this paper, the feasibility of applying contact heating techniques with higher heating rates in the hot stamping process was studied. A contact heating device was designed, and the temperature distribution of the device contact surface was observed. Furthermore, the heating characteristics of 7075 aluminum alloy sheets during the contact heating process were explored by experiments and finite element simulation. Finally, the rapid solution treatment of aluminum alloy was carried out with a contact heating device, which was compared with the furnace heating solution treatment. The experimental and simulation results indicate that the device contact surface has a relatively uniform temperature distribution, and the aluminum alloy sheets can be heated to close to the set temperature in 15 s using contact heating techniques. Meanwhile, the rapid solution treatment of aluminum alloy sheets can be achieved within 15–20 s by contact heating techniques, obtaining superior mechanical properties. This suggests that the contact heating process can be used for rapid heating and rapid solution treatment of aluminum alloy sheets in hot stamping process.