Throughout the past several years, the renewable energy contribution and particularly the contribution of wind energy to electrical grid systems increased significantly, along with the problem of keeping the systems stable. This article presents a new optimization technique entitled the Archimedes optimization algorithm (AOA) that enhances the wind energy conversion system’s stability, integrated with a superconducting magnetic energy storage (SMES) system that uses a proportional integral (PI) controller. The AOA is a modern population technique based on Archimedes’ law of physics. The SMES system has a big impact in integrating wind generators with the electrical grid by regulating the output of wind generators and strengthening the power system’s performance. In this study, the AOA was employed to determine the optimum conditions of the PI controller that regulates the charging and discharging of the SMES system. The simulation outcomes of the AOA, the genetic algorithm (GA), and particle swarm optimization (PSO) were compared to ensure the efficacy of the introduced optimization algorithm. The simulation results showed the effectiveness of the optimally controlled SMES system, using the AOA in smoothing the output power variations and increasing the stability of the system under various operating conditions.