Enhancing Wind Power Conversion System Control Under Wind Constraints Using Single Hidden Layer Neural Network
A. Mazari,
H. Ait Abbas,
K. Laroussi
et al.
Abstract:In the realm of wind power generation, cascaded doubly fed induction generators (CDFIG) play a pivotal role. However, the classical proportional integral derivative (PID) controllers used within such systems often struggle with instability and inaccuracies arising from wind variability. This study proposes an enhancement to overcome these limitations by incorporating a single hidden layer neural network (SHLNN) into the wind power conversion systems (WPCS). The SHLNN aims to complement the PID controller by ad… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.