Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention.