A b s t r a c tExtensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.
64developed resistance to pesticides. If this is true, we can isolate new and effective α-endosulfan degrading bacteria from cockroaches' microflora and these isolates can be used for the biological treatment of waters and soils polluted with endosulfan and other insecticides.
Experimental Material and MethodsChemicals. α-endosulfan and reagents were purchased from Sigma-Aldrich (St Louis, MO, USA). All solvents used were of the highest analytical grade and were employed without further purification. The stock α-endosulfan solution was prepared in acetone and used for all the experiments. The chemical structure and the most important physical parameters of endosulfan are summarized in Fig. 1 O, 24 (Siddique et al., 2003). After 7 days, 5 ml of each culture was re-inoculated into new α-endosulfan-NSM medium and further incubated at 30°C for 7 days. This subculture was repeated under the same culture conditions, and then an aliquot (0.2 ml) from each culture was applied to solid α-endosulfan-NSM for isolation of single colonies.Identification of endosulfan degrading microorganisms. α-endosulfan degrading bacterial isolates were identified by various tests, such as pigment formation, Gram staining, nitrate reduction, catalase and oxidase tests, and starch hydrolysis. Biochemical reactions were conducted according to Benson (2001). Biochemical activities were determined according to the recommended scheme of Bergey's Manual of Determinative Bacteriology (Holt et al., 1994). Identification was confirmed by the fatty acid analysis for all bacterial isolates. Fatty acid methyl ester (FAME) profiles of each bacterial strain were identified by comparing the commercial databases (Tripticase Soy Broth Agar 40) with the MIS software package. The identity of bacterial strains was revealed by computer comparison of FAME profiles of the unknown test strains with those in the library. FAMEs were separated by gas chromatography (HP6890, Hewlett Packard, Palo Alto, CA, USA) with a fused-silica capillary column (25 m × 0.2 mm) with cr...