Recently, numerous scholars have suggested fuzzy time series (FTS) models to forecast many different fields. One of the vital issues for high accurate forecasting in FTS model is method of partitioning in Universe of discourse (UoD). In this research, we propose a novel FTS model, which is established by using hedge algebra (HA) and particle swarm optimization (PSO) for forecasting the different problems. In this model, HA is considered an algebraic structure for partitioning the UoD into unequal-size intervals based on optimal parameters which is determined by PSO. After making the intervals with unequallength, the data values of times series on each interval are symbolized by fuzzy sets and then, these fuzzy sets are utilized to make fuzzy relation groups. Lastly, we keep using the PSO to adjust the size of each interval with view to reaching the better accurate prediction rate. The effectiveness of the proposed method is demonstrated on two datasets which are often applied in many studies in literature as enrolments data of the University of Alabama and Car road accident data in Belgium. The obtained results show that the proposed model produces higher accuracy forecasting when compared with the some of the recent FTS prediction models for all orders of model.