Interspeech 2021 2021
DOI: 10.21437/interspeech.2021-731
|View full text |Cite
|
Sign up to set email alerts
|

Enrollment-Less Training for Personalized Voice Activity Detection

Abstract: We present a novel personalized voice activity detection (PVAD) learning method that does not require enrollment data during training. PVAD is a task to detect the speech segments of a specific target speaker at the frame level using enrollment speech of the target speaker. Since PVAD must learn speakers' speech variations to clarify the boundary between speakers, studies on PVAD used large-scale datasets that contain many utterances for each speaker. However, the datasets to train a PVAD model are often limit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 28 publications
0
0
0
Order By: Relevance