2009
DOI: 10.1016/j.agrformet.2008.10.018
|View full text |Cite
|
Sign up to set email alerts
|

Ensemble data mining approaches to forecast regional sugarcane crop production

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
21
0
3

Year Published

2012
2012
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 44 publications
(24 citation statements)
references
References 22 publications
0
21
0
3
Order By: Relevance
“…Ainda mais, os resultados das simulações proporcionam conhecimentos que possibilitam recomendar práticas para redução dos riscos ambientais e dos custos de produção, resultando em maior sustentabilidade do planejamento agrícola (Gouvêa et al, 2009). Everingham et al (2009) enfatizam que as previsões de produção são úteis para o sucesso de qualquer indústria agrícola que planeja ou vende a produção antes da colheita.…”
Section: Introductionunclassified
“…Ainda mais, os resultados das simulações proporcionam conhecimentos que possibilitam recomendar práticas para redução dos riscos ambientais e dos custos de produção, resultando em maior sustentabilidade do planejamento agrícola (Gouvêa et al, 2009). Everingham et al (2009) enfatizam que as previsões de produção são úteis para o sucesso de qualquer indústria agrícola que planeja ou vende a produção antes da colheita.…”
Section: Introductionunclassified
“…Random forest regression models were built using 500 trees The Agricultural Production Systems Simulator (Keating et al 1999) was used to simulate sugarcane accumulated biomass throughout the growing season. The APSIM biomass index (AI) was generated using an ensemble modelling approach (Everingham et al 2015a;Everingham et al 2009). The Ensemble approach considered a range of APSIM parameterizations represented in the Tully region.…”
Section: Random Forestsmentioning
confidence: 99%
“…Ensemble methods involve making multiple attempts from different data or models to predict a response variable like sugarcane yields. Using multiple efforts to predict a response can increase the robustness and accuracy of predictions compared to using any single data set or model (Breiman 2001;Everingham et al 2009). We stress that random forest models should not be confused with the single decision tree approach like that adopted in classification and regression trees (De'ath and Fabricius 2000).…”
Section: Introductionmentioning
confidence: 99%
“…A novel neural network ensemble approach called the generalized regression neural network ensemble for time series forecasting (GEFTSGRNN) which is a concatenation of existing machine learning algorithms has been applied in benchmark time series forecasting datasets by Gheyas and Smith (2011). Everingham et al (2009) constructed an ensemble method comprising statistical data mining models, to forecast crop productions in north eastern Australia.…”
Section: Introductionmentioning
confidence: 99%