DNA sequences of nearly any desired composition, length, and function can be synthesized to alter the biology of an organism for purposes ranging from the bioproduction of therapeutic compounds to invasive pest control. Yet despite offering many great benefits, engineered DNA poses a risk due to their possible misuse or abuse by malicious actors, or their unintentional introduction into the environment. Monitoring the presence of engineered DNA in biological or environmental systems is therefore crucial for routine and timely detection of emerging biological threats, and for improving public acceptance of genetic technologies. To address this, we developed Synsor, a tool for identifying engineered DNA sequences in high-throughput sequencing data. Synsor leverages the k-mer signature differences between naturally occurring and engineered DNA sequences and uses an artificial neural network to classify whether a DNA sequence is natural or engineered. By querying suspected sequences against the model, Synsor can identify sequences that are likely to have been engineered. Using natural plasmid and engineered vector sequences, we showed that Synsor identifies engineered DNA with >99% accuracy. We demonstrate how Synsor can be used to detect potential genetically engineered organisms and locate where engineered DNA is being introduced into the environment by analysing genomic and metagenomic data from yeast and wastewater samples, respectively. Synsor is therefore a powerful tool that will streamline the process of identifying engineered DNA in poorly characterized biological or environmental systems, thereby allowing for enhanced monitoring of emerging biological threats.