2024
DOI: 10.14569/ijacsa.2024.0150510
|View full text |Cite
|
Sign up to set email alerts
|

Ensemble Empirical Mode Decomposition Based on Sparse Bayesian Learning with Mixed Kernel for Landslide Displacement Prediction

Ping Jiang,
Jiejie Chen

Abstract: Inspired by the principles of decomposition and ensemble, we introduce an Ensemble Empirical Mode Decomposition (EEMD) method that incorporates Sparse Bayesian Learning (SBL) with Mixed Kernel, referred to as EEMD-SBLMK, specifically tailored for landslide displacement prediction. EEMD and Mutual Information (MI) techniques were jointly employed to identify potential input variables for our forecast model. Additionally, each selected component was trained using distinct kernel functions. By minimizing the numb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?