A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs).