There are two definitions of the inner product of modal spatial functions used in the literature. Both definitions integrate the product of the modal spatial functions over a line, area, or volume. The only difference is that one of the definitions takes the complex conjugate of one of the modal spatial functions before multiplying the modes together. The definitions are the same if the modal spatial functions are real.If the modal spatial functions are complex, only the definition which takes the complex conjugate is an inner product. If the specific acoustic impedance of the boundaries has a real part, then the modes are only orthogonal with the definition which does not take the complex conjugate, although this definition is not strictly an inner product because the modal spatial functions are complex in this situation. However, this definition of "inner product" can be used to calculate the coefficients in the modal expansion of the system response. On the other hand, when it comes to calculating the mean pressure squared and the mean sound intensity, the modal spatial functions cross-products cannot be ignored because the modes are not orthogonal for the definition which takes the complex conjugate.