2023
DOI: 10.1101/2023.04.13.536542
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Ensembles for improved detection of invasive breast cancer in histological images

Abstract: Accurate detection of invasive breast cancer (IC) can provide decision support to pathologists as well as improve downstream computational analyses, where detection of IC is a first step. Tissue containing IC is characterized by the presence of specific morphological features, which can be learned by convolutional neural networks (CNN). Here, we compare the use of a single CNN model versus an ensemble of several base models with the same CNN architecture, and we evaluate prediction performance as well as varia… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?