This study proposes a novel optical method of detecting and reducing SARS-CoV-2 transmission, the virus responsible for the COVID-19 pandemic that is sweeping the world today. SARS-CoV-2 belongs to the β-coronaviruses characterized by the crown-shaped spike protein that protrudes out of the virus particles, giving the virus a “corona” shape; hence the name coronavirus. This virus is similar to the viruses that caused SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome), the other two coronavirus epidemics that were recently contained within the last ten years. The technique being proposed uses a light source from a smart phone and a mobile spectrophotometer to enable detection of viral proteins in solution or paper as well as protein-protein interactions. The proof-of-concept is shown by detecting soluble preparations of spike protein subunits from SARS-CoV-2, followed by detection of the actual binding potential of the spike protein with its host receptor, the angiotensin-converting enzyme 2 (ACE2). The results are validated by showing that this method can detect antigen-antibody binding using two independent viral protein-antibody pairs. The binding could be detected optically both in solution and on a solid support such as nitrocellulose membrane. Finally, this technique is combined with DC bias to show that introduction of a current into the system can be used to disrupt the antigen-antibody reaction, suggesting that the proposed extended technique can be a potential means of not only detecting the virus, but also reducing virus transmission by disrupting virus-receptor interactions electrically.SignificanceThe measured intensity of light can reveal information about different cellular parameters under study. When light passes through a bio-composition, the intensity is associated with its content. The nuclei size, cell shape and the refractive index variation of cells contributes to light intensity. In this work, an optical label-free real time detection method incorporating the smartphone light source and a portable mini spectrometer for SARS-CoV-2 detection was developed based on the ability of its spike protein to interact with the ACE2 receptor. The light interactions with control and viral protein solutions were capable of providing a quick decision regarding whether the sample under test was positive or negative, thus enabling SARS-CoV-2 detection in a rapid manner.