2003
DOI: 10.1142/s0129055x03001709
|View full text |Cite
|
Sign up to set email alerts
|

Entanglement Breaking Channels

Abstract: This paper studies the class of stochastic maps, or channels, for which (I ⊗ Φ)(Γ) is always separable (even for entangled Γ). Such maps are called entanglement breaking, and can always be written in the form Φ(ρ) = k R k Tr F k ρ where each R k is a density matrix and F k > 0. If, in addition, Φ is trace-preserving, the {F k } must form a positive operator valued measure (POVM). Some special classes of these maps are considered and other characterizations given.Since the set of entanglement-breaking trace-pre… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

9
728
0
7

Year Published

2006
2006
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 558 publications
(744 citation statements)
references
References 24 publications
9
728
0
7
Order By: Relevance
“…It is also known that every entanglement breaking channel has a description in terms of rank one Kraus operators [35]. We demonstrate these aspects using our Kraus operators {T ℓ (κ)}.…”
Section: Entanglement Breaking Propertymentioning
confidence: 92%
See 1 more Smart Citation
“…It is also known that every entanglement breaking channel has a description in terms of rank one Kraus operators [35]. We demonstrate these aspects using our Kraus operators {T ℓ (κ)}.…”
Section: Entanglement Breaking Propertymentioning
confidence: 92%
“…And a theorem of Choi [30] gives a necessary and sufficient test for extremality of a channel in terms of Kraus operators. It is known that a channel is entanglement breaking if and only if it can be described in terms of a set of rank one Kraus operators [35][36][37]. Further, the work of [38] and [39,40] relate error correctability to the structure of the Kraus operators of a channel.…”
Section: Introductionmentioning
confidence: 99%
“…While Lemma 5 establishes a difference between cubeseparable operations and entangling operations, operations that create Bell diagonal states are entanglement breaking (they break entanglement between the two-qubits and the rest of the universe [26]) and so they cannot be used to generate multiparty entanglement by themselves (and indeed they can be classically efficiently simulated [11]). In Lemma 8 we will present examples of quantum operations that are cube separable despite being capable of generating some form of multiparticle entanglement.…”
Section: Contrast Between Cube Entanglement and Quantum Entanglemmentioning
confidence: 99%
“…Каналы, удовлетворяющие условию (i), были введены в работе [26], а сфор-мулированная выше характеризация получена в [33]. Следуя [33], мы будем называть такие отображения разрушающими сцепленность (р.с.).…”
Section: каналы разрушающие сцепленность и комплементарные к ним лunclassified
“…Следуя [33], мы будем называть такие отображения разрушающими сцепленность (р.с.). Отображе-ние (56) является каналом тогда и только тогда, когда выполняется соотноше-ние полноты…”
Section: каналы разрушающие сцепленность и комплементарные к ним лunclassified