We propose characterization of the three-dimensional topological insulator by using the Chern number for the entanglement Hamiltonian (entanglement Chern number). Here we take the extensive spin partition of the system, that pulls out the quantum entanglement between up spin and down spin of the many-body ground state. In three dimensions, the topological insulator phase is described by the section entanglement Chern number, which is the entanglement Chern number for a periodic plane in the Brillouin zone. The section entanglement Chern number serves as an interpolation of the Z2 invariants defined on time-reversal invariant planes. We find that the change of the section entanglement Chern number protects the Weyl point of the entanglement Hamiltonian and the parity of the number of Weyl points distinguishes the strong topological insulator phase from the weak topological insulator phase.