In the present article, we study how different gravitational wave (GW) burst profiles in linearized gravity, with and without the asymptotic memory, may influence the harvesting between two static Unruh-DeWitt detectors. To this end, we investigate the following burst profiles — Gaussian, sech-squared, Heaviside step function, and tanh. Out of these, the first two bursts contain no memory, while the latter two consist of a non-vanishing memory effect. We find that in all of these cases, entanglement harvesting is possible, and it decreases with the increasing distance between detectors and the detector transition energy. We observe that the harvesting differs qualitatively based on the presence or absence of the memory, which is prominent in a low transition energy regime. With memory, the harvesting keeps increasing with decreasing transition energy, while without memory, it tends to reach finite values. Furthermore, for the two burst profiles without memory, longer bursts correspond to greater harvesting in the low detector transition energy regime, and this characteristic is reversed for larger transition energy. Meanwhile, for the tanh-type profile with memory, harvesting is always greater for shorter bursts. We discuss various implications of our findings.