The distribution of entangled quantum systems among the nodes of a network is a key task at the basis of the development of quantum technologies, e.g., quantum communication, quantum computation, etc. Many efforts have been devoted to identify strategies, based on pre- and post-processing operations or decoherence-free subspaces, to prevent the deterioration of such exotic correlations. However, all these approaches loose their usefulness when the noise level affecting the system surpasses a certain minimal threshold that leads to an entanglement-breaking dynamics. Here we attack this problem in the context of discrete- and continuous-time description of the system dynamics, providing some explicit examples in the context of qubit channels.