In recent years, mobility as a service (MaaS) (i.e., a system combining public transport, shared rides, short-term vehicle rentals, and taxis sourced via mobile applications) has become a solution that is increasingly available in smart cities. Along with the development of transport options, the range of vehicles offered as part of this type of service has expanded widely, from buses, taxis, bicycles, and cars to the innovation of electric scooters. The universality of MaaS services has led to a change in communication behavior and, at the same time, to a rapid increase in the number of people using the proposed solutions. Due to this increase, several researchers devoted their dissertations to issues of the management or optimization of websites; however, they ignored the many technical and health aspects. Recognizing a scientific niche area, the research conducted has been devoted to assessing the impact of the vibrations generated by electric scooters upon the user. Research on the vehicles used in MaaS systems has been conducted to learn and analyze the selected design solutions and their impact on the user who utilizes them. The scope of the research included vibroacoustic research and the mathematical modeling of the studied phenomena.