Bacteriophages are highly specific predators that drive bacterial diversity through coevolution while striking tradeoffs among preserving host populations for long-term exploitation and increasing their virulence, structural stability, or host range. Escherichia coli and other coliform bacteria present in the microbiota of milk and during early ripening of raw milk cheeses have been linked to the production of gas, manifested by the appearance of eyes, and the development of off-flavors; thus, they might cause early blowing and cheese spoilage. Here, we report the characterization of coliphages isolated from manure from small ruminant farms and E. coli strains isolated from goat and sheep raw milk cheese. Additionally, the virulence and host range of locally isolated and laboratory collection phages were determined by comparing the susceptibility of E. coli strains from different sources. In agreement with the high genetic diversity found within the species E. coli, clustering analysis of whole-cell protein revealed a total of 13 distinct profiles but none of the raw milk cheese isolates showed inhibition of growth by reference or water-isolated coliphages. Conversely, 10 newly isolated phages had a broad host range (i.e., able to lyse ≥50% of bacterial hosts tested), thus exhibiting utility for biocontrol and only one cheese-isolated E. coli strain was resistant to all the phages. Whereas there was a high positive correlation between bacterial susceptibility range and lysis intensity, the phages virulence decreased as range increased until reaching a plateau. These results suggest local gene-for-gene coevolution between hosts and phages with selective tradeoffs for both resistance and competitive ability of the bacteria and host-range extension and virulence of the phage populations. Hence, different phage cocktail formulations might be required when devising long-term and short-term biocontrol strategies.