The present trial was designed to assess the effect of phytase, multi-strain probiotic, Saccharomyces cerevisiae, and fumaric acid on performance, nutrient digestibility, bone physical parameters and mineralization, blood constituents, bone and gut histomorphology, and duodenal phosphorus transporter genes of broiler chickens fed a decreased non-phytate phosphorus (nPP) diet for 5 weeks. A total of 480 broiler chickens were allotted to six dietary groups and eight replicates each: (1) positive control diet with recommended levels of nPP (PC; 0.48, 0.44, and 0.41% in the three feeding phases); (2) negative control diet with a decreased dietary nPP (NC; 0.28, 0.24, and 0.21% in the three feeding phases); (3) NC + 600 FTU/kg phytase (PHY); (4) NC + 0.05% multi-strain probiotic (PRO); (5) NC + 0.2% Saccharomyces cerevisiae (SC); and (6) NC + 0.2% fumaric acid. Growth performance data were recorded weekly, and blood sampling was performed at days 21 and 35 of age. Bone quality traits, gut and tibia histology, nutrient digestibility, and intestinal gene expression analyses were conducted at the end of the trial (35 days of age). Final body weight and total gain at day 35 of age of the broiler chickens fed with the PHY, PRO, and SC diets were greater (p < 0.01) than in NC, where broilers fed with the PRO and PHY diets had higher values and were similar to that of PC. There was a non-significant variation in the cumulative feed intake among the treatment groups. The PHY and PRO groups had better FCR than the PC group (p < 0.05), and FA and SC had an FCR equivalent to that of PC. The PHY and PRO broilers had greater dressing % than the NC group (p < 0.05) and even better than PC. The PHY, PRO, SC, and FA broilers had higher relative weights of spleen and bursa of Fabricius (p < 0.01) than NC. In comparison to NC, the PHY, PRO, and SC groups improved (p < 0.05) CP, CF, Ca, and P digestibility. Greater tibia breaking strength of the low nPP-supplemented groups was shown to be associated with higher tibia ash, Ca, and P concentrations (p < 0.01) and increased (p < 0.001) tibia cortical area thickness. At days 21 and 35 of age, the dietary supplements to low nPP diets reduced (p < 0.05) serum total cholesterol, triglyceride, triiodothyronine, thyroxine, glucose, and alkaline phosphatase levels, while serum Ca and P concentrations were improved (p < 0.05) compared to NC. All supplements led to enhancement (p < 0.01) in villi height and width and villi absorptive surface area when compared with NC and were even comparable to that of PC. The mRNA expression of NaP-IIb was up-regulated (p < 0.001) in the duodenum of PRO and FA broilers at day 35 of age compared with NC, and their expression levels were similar to that of PC, indicating greater P availability. It is concluded that dietary supplementation of PHY, PRO, SC, and FA to a low nPP diet was advantageous and mitigated the negative impacts of P reduction on the growth performance, health, nutrient digestibility, and bone quality of broilers.