Inflammatory Bowel Disease (IBD) is a chronic gastrointestinal disorder characterized by periods of activity and remission. IBD includes Crohn’s disease (CD) and ulcerative colitis (UC), and even though IBD has not been considered as a heritable disease, there are genetic variants associated with increased risk for the disease. 5-Hydroxytriptamine (5-HT), or serotonin, exerts a wide range of gastrointestinal effects under both normal and pathological conditions. Furthermore, Serotonin Transporter (SERT) coded by Solute Carrier Family 6 Member 4 (SLC6A4) gene (located in the 17q11.1-q12 chromosome), possesses genetic variants, such as Serotonin Transporter Gene Variable Number Tandem Repeat in Intron 2 (STin2-VNTR) and Serotonin-Transporter-linked promoter region (5-HTTLPR), which have an influence over the functionality of SERT in the re-uptake and bioavailability of serotonin. The intestinal microbiota is a crucial actor in normal human gut physiology, exerting effects on serotonin, SERT function, and inflammatory processes. As a consequence of abnormal serotonin signaling and SERT function under these inflammatory processes, the use of selective serotonin re-uptake inhibitors (SSRIs) has been seen to improve disease activity and extraintestinal manifestations, such as depression and anxiety. The aim of this study is to integrate scientific data linking the intestinal microbiota as a regulator of gut serotonin signaling and re-uptake, as well as its role in the pathogenesis of IBD. We performed a narrative review, including a literature search in the PubMed database of both review and original articles (no date restriction), as well as information about the SLC6A4 gene and its genetic variants obtained from the Ensembl website. Scientific evidence from in vitro, in vivo, and clinical trials regarding the use of selective serotonin reuptake inhibitors as an adjuvant therapy in patients with IBD is also discussed. A total of 194 articles were used between reviews, in vivo, in vitro studies, and clinical trials.