Part-of-speech (POS) tagging performance degrades on outof-domain data due to the lack of domain knowledge. Software engineering knowledge, embodied in textual documentations, bug reports and online forum discussions, is expressed in natural language, but is full of domain terms, software entities and software-specific informal languages. Such software texts call for software-specific POS tagging. In the software engineering community, there have been several attempts leveraging POS tagging technique to help solve software engineering tasks. However, little work is done for POS tagging on software natural language texts.In this paper, we build a software-specific POS tagger, called S-POS, for processing the textual discussions on Stack Overflow. We target at Stack Overflow because it has become an important developer-generated knowledge repository for software engineering. We define a POS tagset that is suitable for describing software engineering knowledge, select corpus, develop a custom tokenizer, annotate data, design features for supervised model training, and demonstrate that the tagging accuracy of S-POS outperforms that of the Stanford POS Tagger when tagging software texts. Our work presents a feasible roadmap to build software-specific POS tagger for the socio-professional contents on Stack Overflow, and reveals challenges and opportunities for advanced software-specific information extraction.