Efficient approximation lies at the heart of large-scale machine learning problems. In this paper, we propose a novel, robust maximum entropy algorithm, which is capable of dealing with hundreds of moments and allows for computationally efficient approximations. We showcase the usefulness of the proposed method, its equivalence to constrained Bayesian variational inference and demonstrate its superiority over existing approaches in two applications, namely, fast log determinant estimation and information-theoretic Bayesian optimisation. maximum entropy spectral density, which provides an analytic upper bound. Furthermore, in developing our algorithm, we establish equivalence between maximum entropy methods and constrained Bayesian variational inference [10].The main contributions of the paper are as follows:• We propose a maximum entropy algorithm, which is stable and consistent for hundreds of moments, surpassing other off-the-shelf algorithms with a limit of a small number of moments. Based on this robust algorithm, we develop a new Maximum Entropy Method (MEMe) which improves upon the scalability of existing machine learning algorithms by efficiently approximating computational bottlenecks using maximum entropy and fast moment estimation techniques; • We establish the link between maximum entropy methods and variational inference under moment constraints, hence connecting the former to well-known Bayesian approximation techniques; • We apply MEMe to the problem of estimating the log determinant, crucial to inference in determinental point processes [11], and to that of estimating the entropy of a Gaussian mixture, important to state-of-the-art information-theoretic Bayesian optimisation algorithms.