Abstract. Stochastic electrodynamics (SED) is a classical theory of nature advanced signi…cantly in the 1960s by Trevor Marshall and Timothy Boyer. Since then, SED has continued to be investigated by a very small group of physicists. Early investigations seemed promising, as SED was shown to agree with quantum mechanics (QM) and quantum electrodynamics (QED) for a few linear systems. In particular, agreement was found for the simple harmonic electric dipole oscillator, physical systems composed of such oscillators and interacting electromagnetically, and free electromagnetic …elds with boundary conditions imposed such as would enter into Casimir-type force calculations. These results were found to hold for both zero-point and non-zero temperature conditions. However, by the late 1970s and then into the early 1980s, researchers found that when investigating nonlinear systems, SED did not appear to provide agreement with the predictions of QM and QED. A proposed reason for this disagreement was advocated by Boyer and Cole that such nonlinear systems are not su¢ ciently realistic for describing atomic and molecular physical systems, which should be fundamentally based on the Coulombic binding potential. Analytic attempts on these systems have proven to be most di¢ cult. Consequently, in recent years more attention has been placed on numerically simulating the interaction of a classical electron in a Coulombic binding potential, with classical electromagnetic radiation acting on the classical electron. Good agreement was found for this numerical simulation work as compared with predictions from QM. Here this worked is reviewed and possible directions are discussed. Recent simulation work involving subharmonic resonances for the classical hydrogen atom is also discussed; some of the properties of these subharmonic resonances seem quite interesting and unusual.