2020
DOI: 10.3390/nano10061101
|View full text |Cite
|
Sign up to set email alerts
|

Entropy and Random Walk Trails Water Confinement and Non-Thermal Equilibrium in Photon-Induced Nanocavities

Abstract: Molecules near surfaces are regularly trapped in small cavitations. Molecular confinement, especially water confinement, shows intriguing and unexpected behavior including surface entropy adjustment; nevertheless, observations of entropic variation during molecular confinement are scarce. An experimental assessment of the correlation between surface strain and entropy during molecular confinement in tiny crevices is difficult because strain variances fall in the nanometer scale. In this work, entropic variatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
2
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 100 publications
(144 reference statements)
0
2
0
Order By: Relevance
“…On the contrary, the external water vapour domain is in a thermal equilibrium state and the time scale is specified by the mean trapping time-the time a molecules travels in the outside domain before being trapped. Random walk simulations inside and outside different size nanocavities reveal the differentiation of time scales inside and outside nanocavities, pointing to an interplay between the thermodynamic state (vapor domain) and the chaotic state (nanocavity domain), leading to a variation of the number of available microstates [2]. Increment of microstates is responsible for entropy deviation during molecular water confinement, experimentally measured in complex nanocavity networks, crafted on polymeric matrixes by 157 nm vacuum ultraviolet laser light.…”
mentioning
confidence: 95%
“…On the contrary, the external water vapour domain is in a thermal equilibrium state and the time scale is specified by the mean trapping time-the time a molecules travels in the outside domain before being trapped. Random walk simulations inside and outside different size nanocavities reveal the differentiation of time scales inside and outside nanocavities, pointing to an interplay between the thermodynamic state (vapor domain) and the chaotic state (nanocavity domain), leading to a variation of the number of available microstates [2]. Increment of microstates is responsible for entropy deviation during molecular water confinement, experimentally measured in complex nanocavity networks, crafted on polymeric matrixes by 157 nm vacuum ultraviolet laser light.…”
mentioning
confidence: 95%
“…The size and topology of physical entities and space outline a set of time-space boundaries between thermodynamic equilibrium and chaotic motions, between physical laws and chaos, where physical rates vary randomly. This is the result of entropic variations from molecular confinement in tiny spaces, emerging from an irreversible surface restructuring at a high hierarchical level [ 3 ].…”
mentioning
confidence: 99%