Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The current study explores the transient magnetohydrodynamic (MHD) flow with the interaction of quadratic convection, slip of second‐order momentum, viscous dissipation, and Newtonian heating. In this setup, the governing equations become highly nonlinear. The numerical solutions are attained by utilizing an implicit type of the Crank–Nicolson technique. The primary aim of the exploration is to figure out the consequence of MHD nonlinear convection and momentum slip of second‐order on the overall behavior of the system. The robust agreement is evinced by numerical computations verified against existing research. Skin friction and Nusselt number decreases for second‐order slips, , and −16. And for and the temporal coefficients of friction and heat transmission attain a steady state at time t = 29.88. It is significant that nonlinear convection predominates over viscous dissipation and that nonlinear convection is influenced by magnetic fields. The results are described using plots and tables.
The current study explores the transient magnetohydrodynamic (MHD) flow with the interaction of quadratic convection, slip of second‐order momentum, viscous dissipation, and Newtonian heating. In this setup, the governing equations become highly nonlinear. The numerical solutions are attained by utilizing an implicit type of the Crank–Nicolson technique. The primary aim of the exploration is to figure out the consequence of MHD nonlinear convection and momentum slip of second‐order on the overall behavior of the system. The robust agreement is evinced by numerical computations verified against existing research. Skin friction and Nusselt number decreases for second‐order slips, , and −16. And for and the temporal coefficients of friction and heat transmission attain a steady state at time t = 29.88. It is significant that nonlinear convection predominates over viscous dissipation and that nonlinear convection is influenced by magnetic fields. The results are described using plots and tables.
Purpose Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid nanoparticles to conventional liquids may greatly improve their thermal conductivity, according to the available evidence. This study aims to examine the influence of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. The investigation considers the effects of thermal radiation, Dufour and Soret. Design/methodology/approach The mathematical model is formulated based on the fundamental assumptions of mass, energy and momentum conservation. The implicit models are epitomized by a set of interconnected nonlinear partial differential equations, which include a suitable and comparable adjustment. The numerical solution to these equations is assessed for approximate convergence by the Runge−Kutta−Fehlberg method based on the shooting technique embedded with the MATLAB software. Findings The findings are presented through graphical representations, offering a visual exploration of the effects of various dynamic parameters on the flow field. These parameters encompass a wide range of factors, including radiation, thermal and Brownian diffusion parameters, Eckert, Lewis and Soret numbers, magnetic parameters, Maxwell fluid parameters, Darcy numbers, thermal and solutal buoyancy factors, Dufour and Prandtl numbers. Notably, the authors observed that nanoparticles with a spherical shape exerted a significant influence on the stream function, highlighting the importance of nanoparticle geometry in fluid dynamics. Furthermore, the analysis revealed that temperature profiles of nanomaterials were notably affected by their shape factor, while concentration profiles exhibited an opposite trend, providing valuable insights into the behavior of nanofluids in porous media. Originality/value A distinctive aspect of the research lies in its novel exploration of the impact of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. By considering variables such as solar radiation, external magnetic flux, thermal and Brownian diffusion parameters and nanoparticle shape factor, the authors ventured into uncharted territory within the realm of fluid dynamics. These variables, despite their significant relevance, have not been extensively studied in previous research, thus underscoring the originality and value of the authors’ contribution to the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.