We characterise the geometry of the statistical Roegenian manifold that arises from the equilibrium distribution of an income of noninteracting identical economic actors. The main results for ideal income are included in three subsections: partition function in distribution, scalar curvature, and geodesics. Although this system displays no phase transition, its analysis provides an enlightening contrast with the results of Van der Waals Income in Roegenian Economics, where we shall examine the geometry of the economic Van der Waals income, which does exhibit a “monetary policy as liquidity—income” transition. Here we focus on three subsections: canonical partition function, economic limit, and information geometry of the economic Van der Waals manifold.